Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements.

Identifieur interne : 000294 ( Main/Exploration ); précédent : 000293; suivant : 000295

Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements.

Auteurs : Matthew Warkentin [États-Unis] ; Robert E. Thorne

Source :

RBID : pubmed:20944242

Descripteurs français

English descriptors

Abstract

The temperature-dependence of radiation damage to thaumatin crystals between T = 300 and 100 K is reported. The amount of damage for a given dose decreases sharply as the temperature decreases from 300 to 220 K and then decreases more gradually on further cooling below the protein-solvent glass transition. Two regimes of temperature-activated behavior were observed. At temperatures above ∼200 K the activation energy of 18.0 kJ mol(-1) indicates that radiation damage is dominated by diffusive motions in the protein and solvent. At temperatures below ∼200 K the activation energy is only 1.00 kJ mol(-1), which is of the order of the thermal energy. Similar activation energies describe the temperature-dependence of radiation damage to a variety of solvent-free small-molecule organic crystals over the temperature range T = 300-80 K. It is suggested that radiation damage in this regime is vibrationally assisted and that the freezing-out of amino-acid scale vibrations contributes to the very weak temperature-dependence of radiation damage below ∼80 K. Analysis using the radiation-damage model of Blake and Phillips [Blake & Phillips (1962), Biological Effects of Ionizing Radiation at the Molecular Level, pp. 183-191] indicates that large-scale conformational and molecular motions are frozen out below T = 200 K but become increasingly prevalent and make an increasing contribution to damage at higher temperatures. Possible alternative mechanisms for radiation damage involving the formation of hydrogen-gas bubbles are discussed and discounted. These results have implications for mechanistic studies of proteins and for studies of the protein glass transition. They also suggest that data collection at T ≃ 220 K may provide a viable alternative for structure determination when cooling-induced disorder at T = 100 is excessive.

DOI: 10.1107/S0907444910035523
PubMed: 20944242
PubMed Central: PMC2954455


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements.</title>
<author>
<name sortKey="Warkentin, Matthew" sort="Warkentin, Matthew" uniqKey="Warkentin M" first="Matthew" last="Warkentin">Matthew Warkentin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Physics Department, Cornell University, Ithaca, New York, USA. maw64@cornell.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Physics Department, Cornell University, Ithaca, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Thorne, Robert E" sort="Thorne, Robert E" uniqKey="Thorne R" first="Robert E" last="Thorne">Robert E. Thorne</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20944242</idno>
<idno type="pmid">20944242</idno>
<idno type="doi">10.1107/S0907444910035523</idno>
<idno type="pmc">PMC2954455</idno>
<idno type="wicri:Area/Main/Corpus">000275</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000275</idno>
<idno type="wicri:Area/Main/Curation">000275</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000275</idno>
<idno type="wicri:Area/Main/Exploration">000275</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements.</title>
<author>
<name sortKey="Warkentin, Matthew" sort="Warkentin, Matthew" uniqKey="Warkentin M" first="Matthew" last="Warkentin">Matthew Warkentin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Physics Department, Cornell University, Ithaca, New York, USA. maw64@cornell.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Physics Department, Cornell University, Ithaca, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Thorne, Robert E" sort="Thorne, Robert E" uniqKey="Thorne R" first="Robert E" last="Thorne">Robert E. Thorne</name>
</author>
</analytic>
<series>
<title level="j">Acta crystallographica. Section D, Biological crystallography</title>
<idno type="eISSN">1399-0047</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Crystallization (MeSH)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>Glass (chemistry)</term>
<term>Models, Chemical (MeSH)</term>
<term>Phase Transition (radiation effects)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plants (MeSH)</term>
<term>Protein Conformation (radiation effects)</term>
<term>Radiation Tolerance (MeSH)</term>
<term>Temperature (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Conformation des protéines (effets des radiations)</term>
<term>Cristallisation (MeSH)</term>
<term>Cristallographie aux rayons X (MeSH)</term>
<term>Modèles chimiques (MeSH)</term>
<term>Plantes (MeSH)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Radiotolérance (MeSH)</term>
<term>Température (MeSH)</term>
<term>Transition de phase (effets des radiations)</term>
<term>Verre (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Glass</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines végétales</term>
<term>Verre</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Transition de phase</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Phase Transition</term>
<term>Protein Conformation</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crystallization</term>
<term>Crystallography, X-Ray</term>
<term>Models, Chemical</term>
<term>Plants</term>
<term>Radiation Tolerance</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cristallisation</term>
<term>Cristallographie aux rayons X</term>
<term>Modèles chimiques</term>
<term>Plantes</term>
<term>Radiotolérance</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The temperature-dependence of radiation damage to thaumatin crystals between T = 300 and 100 K is reported. The amount of damage for a given dose decreases sharply as the temperature decreases from 300 to 220 K and then decreases more gradually on further cooling below the protein-solvent glass transition. Two regimes of temperature-activated behavior were observed. At temperatures above ∼200 K the activation energy of 18.0 kJ mol(-1) indicates that radiation damage is dominated by diffusive motions in the protein and solvent. At temperatures below ∼200 K the activation energy is only 1.00 kJ mol(-1), which is of the order of the thermal energy. Similar activation energies describe the temperature-dependence of radiation damage to a variety of solvent-free small-molecule organic crystals over the temperature range T = 300-80 K. It is suggested that radiation damage in this regime is vibrationally assisted and that the freezing-out of amino-acid scale vibrations contributes to the very weak temperature-dependence of radiation damage below ∼80 K. Analysis using the radiation-damage model of Blake and Phillips [Blake & Phillips (1962), Biological Effects of Ionizing Radiation at the Molecular Level, pp. 183-191] indicates that large-scale conformational and molecular motions are frozen out below T = 200 K but become increasingly prevalent and make an increasing contribution to damage at higher temperatures. Possible alternative mechanisms for radiation damage involving the formation of hydrogen-gas bubbles are discussed and discounted. These results have implications for mechanistic studies of proteins and for studies of the protein glass transition. They also suggest that data collection at T ≃ 220 K may provide a viable alternative for structure determination when cooling-induced disorder at T = 100 is excessive.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20944242</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>05</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1399-0047</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>66</Volume>
<Issue>Pt 10</Issue>
<PubDate>
<Year>2010</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Acta crystallographica. Section D, Biological crystallography</Title>
<ISOAbbreviation>Acta Crystallogr D Biol Crystallogr</ISOAbbreviation>
</Journal>
<ArticleTitle>Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements.</ArticleTitle>
<Pagination>
<MedlinePgn>1092-100</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1107/S0907444910035523</ELocationID>
<Abstract>
<AbstractText>The temperature-dependence of radiation damage to thaumatin crystals between T = 300 and 100 K is reported. The amount of damage for a given dose decreases sharply as the temperature decreases from 300 to 220 K and then decreases more gradually on further cooling below the protein-solvent glass transition. Two regimes of temperature-activated behavior were observed. At temperatures above ∼200 K the activation energy of 18.0 kJ mol(-1) indicates that radiation damage is dominated by diffusive motions in the protein and solvent. At temperatures below ∼200 K the activation energy is only 1.00 kJ mol(-1), which is of the order of the thermal energy. Similar activation energies describe the temperature-dependence of radiation damage to a variety of solvent-free small-molecule organic crystals over the temperature range T = 300-80 K. It is suggested that radiation damage in this regime is vibrationally assisted and that the freezing-out of amino-acid scale vibrations contributes to the very weak temperature-dependence of radiation damage below ∼80 K. Analysis using the radiation-damage model of Blake and Phillips [Blake & Phillips (1962), Biological Effects of Ionizing Radiation at the Molecular Level, pp. 183-191] indicates that large-scale conformational and molecular motions are frozen out below T = 200 K but become increasingly prevalent and make an increasing contribution to damage at higher temperatures. Possible alternative mechanisms for radiation damage involving the formation of hydrogen-gas bubbles are discussed and discounted. These results have implications for mechanistic studies of proteins and for studies of the protein glass transition. They also suggest that data collection at T ≃ 220 K may provide a viable alternative for structure determination when cooling-induced disorder at T = 100 is excessive.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Warkentin</LastName>
<ForeName>Matthew</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Physics Department, Cornell University, Ithaca, New York, USA. maw64@cornell.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thorne</LastName>
<ForeName>Robert E</ForeName>
<Initials>RE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>DMR0225180</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P41 RR001646</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM065981</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM065981-05 A1</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>09</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Acta Crystallogr D Biol Crystallogr</MedlineTA>
<NlmUniqueID>9305878</NlmUniqueID>
<ISSNLinking>0907-4449</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53850-34-3</RegistryNumber>
<NameOfSubstance UI="C003427">thaumatin protein, plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003460" MajorTopicYN="N">Crystallization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005898" MajorTopicYN="N">Glass</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="N">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044367" MajorTopicYN="Y">Phase Transition</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011836" MajorTopicYN="N">Radiation Tolerance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>07</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>09</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20944242</ArticleId>
<ArticleId IdType="pii">S0907444910035523</ArticleId>
<ArticleId IdType="doi">10.1107/S0907444910035523</ArticleId>
<ArticleId IdType="pmc">PMC2954455</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):623-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10639129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Mar 3;287(5458):1615-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10698731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2000 Mar;56(Pt 3):328-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10713520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2000 Mar 15;8(3):315-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10745008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2001 Apr;57(Pt 4):488-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11264577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2001 Apr;57(Pt 4):566-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11264586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Aug 24;311(4):851-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11518535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2002 Mar;58(Pt 3):459-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11856832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2002 Jul 1;9(Pt 4):198-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12091725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Oct 17;419(6908):743-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12384704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2002 Nov 1;9(Pt 6):355-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12409622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2002 Nov 1;9(Pt 6):368-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12409624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2002 Dec;58(Pt 12):2060-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12454465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2003 Jan;11(1):13-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12517336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2003 Feb;11(2):217-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12575941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q Rev Biophys. 2002 Nov;35(4):327-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12621860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jun 4;357(6377):423-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1463484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Mar;60(Pt 3):412-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14993664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2004 May;86(5):3176-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15111430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2004 Aug 22;121(8):3736-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15303941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Mar 10;31(9):2469-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1547232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2005 May;12(Pt 3):257-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2005 May;12(Pt 3):276-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2005 May;12(Pt 3):299-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2005 May;12(Pt 3):310-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2005 Oct;15(5):538-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16129597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):48-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16369093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Feb;62(Pt 2):125-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16421442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4912-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16549763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2000 Sep 1;7(Pt 5):313-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16609214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Jun 13;45(23):7023-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16752893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Sep;62(Pt 9):1030-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16929104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2007 Jan;14(Pt 1):4-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17211067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2007 Jan;14(Pt 1):24-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17211069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Mar 1;446(7131):97-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17330045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18049-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17986611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2007 Dec;15(12):1531-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18073104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2008 Feb 14;112(6):1571-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18205352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Biophys J. 2008 Jun;37(5):619-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18286273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2008 Apr 9;130(14):4586-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18338890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11742-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18701720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2008 Sep;15(Pt 5):458-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18728316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2009 Mar;16(Pt 2):133-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19240325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2009 Oct 1;42(Pt 5):944-952</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19798409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1094-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):339-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20382986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):393-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20382993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):437-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20382997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2006 Dec 1;39(6):805-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20461232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Feb 23;337(6209):754-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2918910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr B. 1988 Feb 1;44 ( Pt 1):22-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3271102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Radiat Res. 1969 Apr;38(1):7-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5777999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Biophys Mol Biol. 1982;39(2):69-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7048420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1982 Oct 15;161(1):177-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7154076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q Rev Biophys. 1995 May;28(2):171-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7568675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1994 Dec 15;2(12):1135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7704524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 1996 Jun;3(6):425-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8807873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1976 Sep 25;106(3):889-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">978739</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
<settlement>
<li>Ithaca (New York)</li>
</settlement>
<orgName>
<li>Université Cornell</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Thorne, Robert E" sort="Thorne, Robert E" uniqKey="Thorne R" first="Robert E" last="Thorne">Robert E. Thorne</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Warkentin, Matthew" sort="Warkentin, Matthew" uniqKey="Warkentin M" first="Matthew" last="Warkentin">Matthew Warkentin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000294 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000294 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20944242
   |texte=   Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20944242" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020